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We propose a numerically exact approach to nonequilibrium real-time dynamics that is applicable to quan-
tum impurity models coupled to biased noninteracting leads, such as those relevant to quantum transport in
nanoscale devices. The method is based on a diagrammatic Monte Carlo sampling of the real-time perturbation
theory along the Keldysh contour. We benchmark the method on a noninteracting resonant-level model and, as
a first nontrivial application, we study zero-temperature nonequilibrium transport through a vibrating molecule.
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Recent advances in nanotechnology have made it possible
to contact microscopic quantum objects with metallic elec-
trodes. Artificial atoms �quantum dots�, molecules, or quan-
tum wires have been contacted, opening several routes to-
ward promising nanoelectronic devices.1,2 Following the first
discovery of the Kondo effect in quantum dots,3 data have
appeared where, e.g., single molecules4,5 or coupled quantum
dots6 were contacted by metallic leads. These developments
raised several physical questions, which make electron trans-
port through nanosystems one of the frontier fields in
condensed-matter physics. Contacting microscopic objects is
intriguing as it addresses quantum transport in a regime
where the tunneling rate may become comparable or even
lower relative to other energy scales, such as the electron-
electron repulsion or the energy of atomic displacements, a
situation which may lead to novel nonequilibrium effects.7,8

This experimental progress calls for the development of
efficient nonperturbative theoretical tools to treat out-of-
equilibrium phenomena. The simplest way to model non-
equilibrium transport in nanodevices is through a quantum
impurity model, namely, a set of discrete electronic levels a
�with creation operators ca�

† , � being the spin� mimicking a
quantum dot or a molecule, coupled to two baths of nonin-
teracting electrons �the leads, with creation operators fk��

† �,
labeled by some quantum number k. When the two leads
��=L ,R� are kept at different chemical potentials �L−�R
=eV, the general Hamiltonian can be written as

H = �
�=L,R

�
k�

�k�fk��
† fk�� + Hloc�ca�

† ,ca��

+ �
ka��

�Vka�fk��
† ca� + H.c.� . �1�

The local Hamiltonian Hloc accounts for all of the physics
within the quantum impurity, including strong correlations
and possible vibrational degrees of freedoms. It could in
principle, because of the discrete set of levels, be diagonal-
ized exactly. However, hybridization to the reservoirs makes
the problem hard except in simple cases. Furthermore, the
finite bias voltage, which drives the system out of equilib-
rium, rules out the possibility of applying to this problem all
the powerful tools developed during recent decades for equi-
librium quantum impurities.9–11 This problem could be cir-
cumvented by the trick proposed in Ref. 12, which however

requires a delicate analytic continuation and is only valid for
the steady state. Standard many-body approaches to nonequi-
librium are usually based on Keldysh perturbation theory and
are limited to lowest orders or to partial resummations of an
arbitrarily chosen subclass of diagrams.13–15 While several
results have been obtained by these methods, there is still a
need of numerical exact approaches to access the most inter-
esting intermediate-coupling regime. However among the re-
cently proposed algorithms dealing with nonequilibrium
real-time dynamics, most of them suffer from systematic er-
rors that limit their range of applicability. The iterative real-
time path-integral method16 requires, for instance, both a
truncation in the quantum dynamics �Trotter error� but also a
long-time cutoff on the correlation induced by the leads, the
latter preventing access to the low-bias and low-temperature
regime. The path-integral Monte Carlo approach proposed in
Ref. 17, while treating exactly the lead degrees of freedom,
still relies on a time discretization. The time-dependent ex-
tension of numerical renormalization group �NRG� �Ref. 18�
allows for an accurate description of the equilibrium real-
time dynamics. However, its extension to dissipative non-
equilibrium dynamics at finite bias is questionable because
of the finite size of the leads, corresponding to the maximum
number of NRG iterations, even if some progress has been
recently achieved for the steady state.19

In this work we present a numerically exact approach to
nonequilibrium dynamics in quantum impurity models,
which is based on a diagrammatic Monte Carlo11 �diagMC�
sampling of the real-time Keldysh perturbation theory in the
hybridization Hamiltonian. The method is numerically exact
since it does not require any discretization in the quantum
dynamics or in the size of the fermionic reservoirs. These
features make our scheme particularly well suited to describe
transient dynamics and dissipation in open quantum systems
within a completely unbiased approach. We benchmark the
method on a noninteracting resonant-level model at zero
temperature. Then, as a first application, we compute the
inelastic tunneling spectrum of a resonant level coupled to a
local vibrational mode.

Formulation. To set up the method, we consider an ini-
tially decoupled system, made by the isolated impurity and
by the two leads, each assumed to be at equilibrium with its
own reservoir at chemical potential ��. At time t=0, we
switch on hybridization in Eq. �1� and let the system evolve
with the full Hamiltonian H. Given an initial density matrix,
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�0, we want to compute average values of physical operators
evolved in real time from 0 to t�0. Real-time quantum dy-
namics can be represented as an evolution along the so-
called Keldysh contour K, plotted in Fig. 1, made of two
branches winding around the real-time axis from zero to t
�lower branch� and back from t to zero �upper branch�. Then,
the average value of any operator O can be written as

�O�t�� = Tr��0TK	exp
− i�
K

d	H�	��O
� , �2�

where the trace is over the lead and impurity degrees of
freedom, and TK denotes time ordering along the Keldysh
contour. The main idea of our approach is to expand evolu-
tion operator �2� in powers of the hybridization and trace out
exactly the lead degrees of freedom. The resulting diagrams
are then sampled with a Monte Carlo algorithm which looks
like the natural generalization to the Keldysh contour of the
diagrammatic Monte Carlo method of Ref. 11. To show how
the method works, we start by considering a spinless biased
resonant-level model �RLM�, namely, a single fermionic en-
ergy level 
d driven out of equilibrium by an applied bias
eV=�L−�R between the two leads. Given an initial density
matrix �0=�leads � �imp, with �leads describing the two un-
coupled leads and �imp an initially occupied impurity, we are
interested in computing, for example, the real-time evolution
of the RLM population n=c†c. Expanding Keldysh evolution
operator �2� in powers of the hybridization and tracing out
the degrees of freedom of the leads, we get

�n�t�� = �
k=0

�

�
n=0

k

�− 1�k�
0

tk
s

dtk
e�

0

tk−1
e

dtk
s . . .

��
0

tk−n
s

dtk−n
e �

0

t

dtk−n
s �

0

t

dtk−n−1
e

��
0

tk−n−1
e

dtk−n−1
s . . .�

0

t2
s

dt1
e�

0

t1
e

dt1
s

�Dk�t1
e, . . . ,tk

e�t1
s , . . . ,tk

s�Lk�t1
e, . . . ,tk

e�t1
s , . . . ,tk

s� . �3�

Here Dk results from tracing the lead degrees of freedom. It
can be expressed in closed form as the determinant of a
k�k matrix M−1,

Dk�t1
e, . . . ,tk

e�t1
s , . . . ,tk

s� = det�M−1� , �4�

whose entries are the Keldysh hybridization functions

Mij
−1 = 
K�ti

e,tj
s�s�ti

e,tj
s� , �5�

which we define as


K�te,ts� = �
k�

�Vk��2�TK�fk��te�fk�
† �ts��� . �6�

We adopt the standard definition of the Keldysh Green’s
functions, namely, we consider ts, te as living on the contour
K. We note the additional sign s�te , ts�, which is negative
when the two times are on opposite branches and positive
otherwise. While the determinant Dk properly accounts for
the effects associated to the leads, the function Lk involves
only the impurity degrees of freedom and can be generally
written as an average over the initial impurity density matrix,
namely,

Lk = �TK�c†�tk
e�c�tk

s� . . . c†�t1
e�c�t1

s�n�t���imp. �7�

Algorithm. The expansion thus obtained admits a natural
representation in terms of a collection of k segments,
t� �ti

s , ti
e�, or equivalently k−1 antisegments, t� �ti

e , ti+1
s �,

properly ordered along the contour K and connected in all
possible ways by the Keldysh hybridization functions

K�te , ts�. An example of such a configuration for k=3 is
plotted in Fig. 1. Each configuration contributes to the sum
with its own weight, which is given here by Dk. We sample
the whole configuration space using a Monte Carlo proce-
dure. Three basic updates are implemented: adding/removing
a segment, adding/removing an antisegment, or shifting a
segment endpoint. We accept or reject a new configuration
according to a detailed balance prescription. In the actual
simulation, we store and update the matrix M defined in Eq.
�5�, which is the only quantity required to compute Metropo-
lis acceptance ratios.11

Benchmark. We benchmark the method on the biased
spinless RLM. Its nonequilibrium real-time dynamics, de-
spite being analytically solvable by standard methods, has
proven to be very difficult to access within other numerical
approaches,16,17 especially in at low bias and low tempera-
ture, where the correlations induced by the fermionic leads
decay slower than exponential in time. To test the reliability
of our method, we compute the occupation number �n�t�� at
zero temperature as a function of time t and for different
values of the level position 
d, both in equilibrium, eV=0, as
well as out of equilibrium, eV�0, and compare the exact
results with diagMC data. In this simple case, we expect that
a single energy scale, namely, the level broadening �
=��k�Vk�2��
k�, will control the approach to the steady state.
As can be seen in Fig. 2, the diagMC calculation perfectly
matches the exact solution. We are able to resolve both the
short-time transient after the initial configuration and the ap-
proach to steady state. A finite applied bias eV�0 cuts off
Keldysh evolution operator �2� �the steady state is reached
earlier than at eV=0�, as pointed out by Ref. 20, thus making
the expansion more convergent. Moreover, within the present
approach we can easily measure the current flow through the
impurity I�t�= 1

2 �IL�t�− IR�t�� on a fine real-time grid in a very
efficient way. Results shown in Fig. 2 confirm that a true
nonequilibrium steady state with a finite value of the current
is reached at long times due to the infinite size of the bath.
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FIG. 1. �Color online� Example of a configuration with k=3
segments, each starting at ti

s and ending at ti
e, i=1,2 ,3. Here blue

�dark gray�/red �gray� dots stands for annihilation/creation operators
of the initially occupied level while red segments indicate how the
vertices are connected by the hybridization functions 
K�te , ts� in
the particular configuration shown. Arrows indicate time-ordering
operation along the contour.
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Dissipation occurs entirely within the fermionic reservoir
and we do not need to include any fictitious bosonic bath to
reach a steady state.17 A delicate issue to discuss when sam-
pling real-time quantum dynamics is the so-called sign prob-
lem, namely, the exponential scaling of relative statistical
errors in the Monte Carlo estimate of any observable in the
infinite-size limit. In this respect, the main advantage of the
diagrammatic Monte Carlo method is that one pointed out in
Ref. 21: both the thermodynamic limit as well as the zero-
temperature/zero-bias limit can be safely taken with no nu-
merical effort while the computational demanding part is re-
lated to the long-time limit because the average number of
sampled diagrams scales roughly linearly in time. While for
the simple RLM model we can reach the steady state running
the code for a couple of days on a laptop, when an exponen-
tially small energy scale in the tunneling controls the phys-
ics, as, e.g., in the Kondo regime, ad hoc resummation,21 or
more efficient sampling criteria must be used to improve
accuracy.

Nonequilibrium transport through a single molecule. As a
first nontrivial application we consider a simple model of a
molecular conductor, namely, a spinless fermionic level
coupled to Holstein phonons. The local Hamiltonian is

Hloc�n� =
�0

2
�x2 + p2� + gx�n −

1

2
� + 
d�n −

1

2
� , �8�

where g is the electron-phonon coupling, �0 is the phonon
frequency �x is the phonon displacement and p its conjugate
momentum�, 
d is the energy of the level, and n its occu-
pancy. Our Keldysh diagMC can be naturally extended to
include local phonons,22 the only difference appearing in the
trace over local degrees of freedom �7�, now involving fer-
mionic operators time evolved according to Hamiltonian �8�
for the electron-phonon subsystem. This trace can be evalu-
ated analytically by observing that the local Hamiltonians

with different level occupancy n=0,1 are related one to the
other by a unitary transformation, Hloc�0�+�d=U†Hloc�1�U,
with U=exp�igp /�0�. It follows that the bosonic contribu-
tion to the local trace reduces the following bosonic correla-
tion function

Lk
ph = Tr��phU

†�tk
e�U�tk

s�U†�tk−1
e � . . . U�t1

s�� , �9�

which can be easily evaluated analytically for most common
initial phonon density matrices �ph, which we assume the
equilibrium distribution at zero temperature. In Eq. �9� U�t�
and U†�t� are the unitary operators evolved with Hloc�1�, and
we have assumed the level initially occupied. The coupling
to molecular vibrations is known to significantly affect in-
elastic electron tunneling.23 When the bias hits a vibrational
frequency, the differential conductance dI /dV changes
sharply. Experimentally, it is observed that dI /dV increases
in the tunneling regime but decreases in the opposite case of
a high transmission barrier. Although simple physical argu-
ments can be invoked24,25 to explain this phenomenon, theo-
retical calculations have so far been restricted to lowest or-
ders in the electron-phonon coupling.26,27 In the simple
resonant-level model that we are considering, previous per-
turbative calculations predicted that dI /dV at bias eV=�0
should decrease or increase if the zero-bias conductance G
�0.5 or G�0.5, respectively, in units of the unitary value
�in our spinless case e2 /h�. Evidences for this were very
recently reported by Tal and co-workers8 with H2O mol-
ecules bridging a Pt break junction. Since the Keldysh di-
agMC is nonperturbative in the electron-phonon coupling, it
offers the possibility to verify these perturbative predictions.
We model the two regimes of G�0.5 by two different values
of the level position 
d=1 and 3, the former closer to reso-
nance than the latter, and compute directly the differential
conductance dI /dV. As can be seen from Fig. 3, either step-
down or step-up features do appear around the threshold for
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FIG. 2. �Color online� Zero-temperature real-time dynamics for
different bias values eV of the dot population, �n�t��, from an ini-
tially occupied dot �left panel� and of the current, �I�t�� �right panel�
of the resonant-level model. DiagMC results �dots� are compared
with the exact solution �full line�. We take �d=� and consider a flat
density of states in the leads with a half bandwidth 10�. The in-
creasing error bars for larger times is due to the limited simulation
time.
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FIG. 3. �Color online� Zero-temperature differential conduc-
tance dI /dV �in unit of e2 /h� for bias values eV around �0=2.0�.
Electron-phonon coupling is g=0.5�0. We consider two different
values of the fermionic level position 
d in order to reproduce the
crossover from reduced �step-down� to enhanced �step-up�
conductance.
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vibronic excitations, eV��0, when the zero-bias conduc-
tance is greater or lower than 0.5, respectively, in agreement
with perturbative results.26,27 We also note that the step is not
as abrupt as in perturbation theory, likely signaling a signifi-
cant phonon damping.

In summary, we have introduced a numerically exact ap-
proach to nonequilibrium quantum transport in nanoscopic
conductors. The method is based on a diagrammatic Monte
Carlo sampling of the real-time perturbation theory in the
impurity-lead hybridization, performed along the Keldysh
contour required to treat nonequilibrium effects. Our ap-
proach is free from any systematic error since it does not
require truncating of the real-time dynamics or introduction
of finite-size effects in the leads. Moreover, in spite of the
oscillating nature of the quantum evolution, we are able to
follow the dynamics starting from an arbitrary initial prepa-
ration up to the steady state. This is primarily due to the

combined effects of infinite leads and of the applied bias,
which cut off the Keldysh evolution operator. It is also due to
the capability of the algorithm to cope with sign problem. As
a first application we studied the zero-temperature nonlinear
transport through a simple model molecular conductor. Be-
ing completely general, our method can in principle be ap-
plied to any discrete quantum system bridging two noninter-
acting conducting leads, providing a tool to study quantum
transport in nanoscopic devices.

Note added: After completion of this work, we became
aware of a similar attempt by Schmidt et al.,28 further devel-
oped in Ref. 29.
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